[P29] A COMPARISON BETWEEN TWO DIFFERENT SILVER SPRAY POWDERS IN THE MANAGEMENT OF INFECTIOUS BEDSORES

Roberto Cassino¹

¹ *Città Studi* Clinical Institute, Milan, Italy

Introduction: According with the Wounds International Consensus of 2012, in case of infectious wound, it's recommended to use a silver antimicrobial dressing, avoiding SilverSulfADizine and preferring new medications containing ionic silver. The aim of this work is to demonstrate that new SCX technology (Silicon Dioxide (SiO₂-Ag+Chlorhexide) is more effective than SSD (SilverSulfADizine) in the management of infectious wounds.

Methods: 10 infectious pressure ulcers (Cutting & Harding criteria) have been enrolled in this study; we first treated them with a spray powder of SSD, every 48 hours for 14 days; if still infectious after this period, we should change the treatment, using a spray powder containing silicon dioxide, ionic silver and chlorhexidine (Silicon Dioxide (SiO₂-Ag+Chlorhexide) every 48 hours for 14 days. We evaluated the number of clinical signs of infection and the disappearance or not of the wound edge erythema.

Results: All wounds treated with SSD were still infectious after the treatment period; the signs of infection increased and the wound edge erythema didn't disappear. So we treated all wounds with SCX and they all improved within the period of observation with complete disappearance of clinical signs of infection and of the wound edge erythema.

Discussions: This work demonstrated that Silicon Dioxide (SiO₂-Ag+Chlorhexide) is really more effective than SSD, especially in terms of long lasting antimicrobial action.

Clinical relevance: The clinical relevance of this study is that this new technology can improve the quality of life of patients with pressure sores: usually they have no pain, if the wound is clean, but when infected, the involvement of soft tissues surrounding the wound causes much pain and, very often, they need hospitalization.

References:

[P30] THE ROLE OF IONIC SILVER IN THE HEALING OF DEEP NARROW BEDSORES

Roberto Cassino¹, Agnieszka Kąpska²

¹ *Città Studi* Clinical Institute, Milan, Italy
² Holyoke Nursing Home, Bologna (Italy)

Introduction: The main problem in the management of deep narrow wounds is the growing of granulating tissue from the bottom of the lesion; very often we have a lot of exudate inside the lesion, very difficult to drain outside, that doesn't allow the growing of granulating tissue. Usually we use a dry antisepsic gauze in a rope shape to drain the exudate, but the growing of new viable tissue and the healing are very slow and difficult. The aim of this study is to demonstrate that a new technological ionic silver can help to achieve this target.

Methods: The study is still ongoing. We enrolled 15 non healing medium/heavy exuding deep narrow pressure ulcers on stand by for at least 6 weeks, dressed with an antisepsic dry gauze; we are treating them with a spray powder containing silicon dioxide, ionic silver and chlorhexidine (Silicon Dioxide (SiO₂-Ag+Chlorhexide)) before filling the cavity/flatus with dry antisepsic gauze. Dressing change every 48 hours. We are evaluating the filling/healing time.

Results: All wounds improved within the first two weeks of treatment. At the moment 7 lesions have been completely healed: 3 within 4 weeks and 4 within 8 weeks; the other 8 wounds, still in treatment, are improving: there's a significant reduction of depth (about 40% within the first two weeks) and the exudate is better controlled. No new signs of infection, or malodour, or pain.

Discussions: This work demonstrated that Silicon Dioxide (SiO₂-Ag+Chlorhexide) spray powder is very effective to promote the growing of granulating tissue in this kind of wounds; it's also a good system to prevent bacterial colonization. Maybe this result is due to the effectiveness against bacterial strain that can damage viable tissues.

Clinical relevance: The clinical relevance of this study is that this new technological ionic silver dressing can be effective not only against infections, but also to promote granulation and healing, especially in these particular bedsores in which bacterial growing can stop the healing process.

References: